INVESTIGATION OF THE INTEGRAL STRENGTH AND DEFORMATION CHARACTERISTICS OF CENTRIFUGED AND VIBROCENTRIFUGED CONCRETES ON ACTIVATED PORTLAND CEMENT
Abstract and keywords
Abstract (English):
In this work, a study of the integral strength and deformation characteristics of centrifuged and vibrocentrifuged concretes on activated Portland cement is carried out. Mechanical activation of cement was carried out using a specialized grinding unit. The manufacture of centrifuged and vibrocentrifuged samples was carried out on an experimental laboratory centrifuge. All samples were made from concrete of the same composition. In total, four basic samples of annular cross-section were manufactured and tested with the following dimensions: outer diameter D = 450 mm; inner hole diameter d = 150 mm; total height H = 1200 mm. The optimal values ​​of technological parameters of centrifugation and vibrocentrifugation are given. A scheme has been developed for obtaining small-sized samples from a common annular section to determine the strength and deformation characteristics. According to the results of the study, it was found that an improvement in the values ​​of integral strength and deformation characteristics when using activated Portland cement is observed in both centrifuged and vibrocentrifuged samples. It was found that samples made by vibrocentrifugation technology have the best strength and deformation characteristics than samples made by centrifugation. The conclusion is made about the technology of vibrocentrifugation as the most preferable for the manufacture of reinforced concrete products of annular section.

Keywords:
Centrifugation, vibrocentrifugation, reinforced concrete, activated Portland cement, integral characteristics
Text
Publication text (PDF): Read Download

Введение. В настоящее время актуальным является производство изделий, конструкций, а также возведение сооружений и зданий из сборного и монолитного железобетона, имеющего наилучшие физико-механические конструктивные и деформативные характеристики, и при этом обладающих наименьшей массой, следовательно, наименьшим весом, особенно в условиях плотной городской застройки. Таким образом, одной из основных прикладных задач инженеров-строителей и ученых, работающих над созданием новых технологий строительства в области железобетона, является создание эффективных маломатериалоемких конструкций и изделий с минимальными сечениями и минимальным весом.

Однако в настоящее время известно не так много подобных видов железобетонных изделий и конструкций, в связи с чем встает задача получения новых усовершенствованных видов бетона и изготовление эффективных маломатериалоемких конструкций. Перспективным видится получение центрифугированных изделий кольцевого сечения, как было ранее показано в работах [1-7]. Ранее в наших исследованиях было установлено, что наиболее эффективным способом из центробежных способов формования является так называемое виброцентрифугирование, то есть сочетание центробежного воздействия при уплотнении бетонной смеси с ее одновременным вибрированием [8, 9].

Таким образом, с точки зрения теории мы влияем на структурообразование, а, следовательно, на свойства получаемых железобетонных изделий и конструкций. Структура, получаемая при центрифугировании и особенно при виброцентрифугировании, является вариатропной, то есть наблюдается различие структуры и свойств по толщине кольцевого сечения получаемых изделий и конструкций. Таким образом, нами ранее уже была доказана эффективность наиболее вариатропной структуры железобетонных конструкций для эксплуатации их в условиях с более высокими требованиями [10, 11].

С точки зрения теории и практики строительной науки интересным видится направление развития теории вариатропности структуры бетона центрифугированных и виброцентрифугированных железобетонных изделий и конструкций, и в этой связи поиск новых направлений усиления вариатропии является актуальным. Одним из актуальных и востребованных способов повышения физико-механических конструктивных и деформативных характеристик является так называемая активация бетона и его составляющих на стадии изготовления [12-17].

Рассмотрим активацию портландцемента механическими способами, а именно домолом. В разрезе намеченной цели нами были поставлены следующие задачи в исследовании:

  • провести обзор и анализ литературы, посвященной активации цемента для бетонных и железобетонных изделий;
  • разработать программу экспериментальных исследований;
  • выполнить исследования с помощью действующих нормативных и авторских методик, и обработать результаты;
  • формулирование выводов по полученным результатам, разработка практических рекомендаций для производства и иных технологий получения новых эффективных, малоэнергоемких, маломатериалоемких железобетонных изделий и конструкций с вариатропной структурой бетона кольцевого сечения, изготовленных методами центрифугирования и виброцентрифугирования.

Нами в рамках теории вариатропности железобетонных изделий и конструкций кольцевого сечения было предложено разделять понятия интегральные и дифференциальные характеристики бетона. В настоящем исследовании перед нами ставилась задача исследовать интегральные характеристики бетона, полученного методами центрифугирования и виброцентрифугирования, с использованием активированного портландцемента.

Материалы и методы. Механическая активация цемента осуществлялась с помощью специализированного помольного агрегата – шаровой планетарной мельницы «Активатор-4М». Технические характеристики шаровой планетарной мельницы представлены в таблице 1.

 

Таблица 1. Технические характеристики «Активатор-4М»

Наименование показателя

Единицы измерения

Показатель

Планетарный диск:

- скорость вращения

- эффективный диаметр

 

об/мин

мм

 

100–800

400

Скорость вращения барабанов

об/мин

150–1650

Центробежное ускорение

м/с2

1500

Барабаны

шт

4

Объем барабана

мл

1000

Загрузка шаров

г

600–1400

Загрузка порошка

г

50–400

Материал: шары

 

ШХ15СГ

барабаны

мм

Ø95×180

 

В качестве вяжущего применялся портландцемент марки ПЦ 400 Д0, в таблице 2 представлены его физико-механические характеристики, а в таблице 3 – его минералогический состав.

 

Таблица 2. Физико-механические характеристики портландцемента ПЦ 400 Д0

Наименование свойства

Значение

Тонкость помола, проход через сито № 008, %

95,8

Удельная поверхность, см2

2988,5

Нормальная густота цементного теста, %

26,5

Сроки схватывания, час:мин

-начало

- конец

 

 0:48

 4:00

Предел прочности при сжатии в возрасте 28 суток, МПа

42,5

 

Таблица 3. Минералогический состав портландцемента

Марка цемента

Минералогический

состав, %

C3S

C2S

C3A

C4AF

ПЦ 400 Д0

64

11

7,1

13,2

 

Режим помола портландцемента марки ПЦ 400 Д0 рекомендуется проводить при следующих параметрах (время помола τ = 2 мин; частота вращения ротора νр = 35 Гц).

Для изготовления центрифугированных и виброцентрифугированных образцов была применена экспериментальная лабораторная центрифуга ЦСРЛ-1 с электродвигателем постоянного тока с тиристорными блоками питания, принципиальная схема и подробное описание которой представлены в работе [18]. Вибрации формы осуществлялись за счет дополнительно надеваемых на валы шпонок (выступов), на которых вращающаяся форма с бетонной смесью подвергалась дополнительной вибрации [19, 20].

В качестве крупного заполнителя применялся гранитный щебень, физико-механические характеристики которого представлены в таблице 4.

 

Таблица 4. Физико-механические характеристики щебня

Фракция

Насыпная плотность, кг/м3

Пустотность, %

Содержание пылевидных и глинистых частиц, % по массе

Содержание зерен пластинчатой (лещадной)

и игловатой форм, % по масса

Дробимость, % по массе

5-20

1470

45,7

0,65

17

12,7

 

В качестве мелкого заполнителя применялся песок кварцевый, физико-механические характеристики которого представлены в таблице 5.

 

Таблица 5. Физические свойства мелкого заполнителя

Плотность, г/см3

Насыпная плотность,

кг/м3

Модуль крупности

Пустотность, %

Водопотребность, %

2,62

1480

1,4

43,3

9

 

Для регулирования подвижности бетонных смесей использовался суперпластификатор Muraplast FK 48 в количестве 1,5 % от массы цемента.

Все образцы были изготовлены из бетона одинакового состава, расход материалов на 1 м3 составил: Ц = 520 кг, Щ = 1331 кг, П = 396 кг, В = 193 л.

Всего изготовлено и испытано четыре базовых образца кольцевого сечения с размерами:

  • внешний диаметр D = 450 мм;
  • внутренний диаметр отверстия d = 150 мм;
  • общая высота H = 1200 мм.

Изготовление центрифугированных образцов с активированным и неактивированным портландцементом осуществлялось при следующих значениях параметров центрифугирования: режим разгона и торможения вращения – традиционный; угловая скорость вращения – 156 рад/с; время центрифугирования – 12 мин.

Изготовление виброцентрифугированных образцов с активированным и неактивированным портландцементом осуществлялось при тех же самых значениях параметров центрифугирования и при следующих значениях параметров виброцентрифугирования: высота технологических выступов хомутов – 5 мм; длина технологических выступов хомутов – 20 мм; шаг между технологическими выступами хомутов – 30 мм; режим вибрирования – попеременный. Попеременный режим вибрирования характеризуется тем, что на приводном вале выступы хомутов, надетых на вал с обеих сторон, расположены симметрично и параллельно по отношению друг к другу, а на опорном вале – несимметрично с различным градиентом запаздывания.

Для изучения интегральных (общих, усредненных по сечению) характеристик бетона из кольцевого сечения были выделены 3 условных квадранта, из которых выпиливались образцы для последующих испытаний на осевое сжатие, осевое растяжение и растяжение при изгибе. Для испытаний на осевое сжатие и растяжение из первого квадранта выпиливались по четыре куба размерами 15х15х15 см, а для испытаний на осевое сжатие – одна призма размером 15х15х60 см. Далее из второго квадранта выпиливались две призмы размерами 15х15х60 см – для испытаний на осевое сжатие, из третьего квадрата выпиливались также две призмы размерами 15х15х60 см для испытаний на осевое растяжение. Схема получения малоразмерных образцов представлена на рис. 1.

 

Рис. 1. Схема получения малоразмерных образцов

 

Испытания на сжатие и растяжение при изгибе проводились в соответствии с требованиями ГОСТ 10180. 

Испытания на осевое сжатие и осевое растяжение проводились в соответствии с требованиями ГОСТ 24452.

Результаты обсуждения. Результаты экспериментальных исследований интегральных прочностных и деформативных характеристик центрифугированных и виброцентрифугированных бетонов на активированном портландцементе представлены в таблице 6 и на рис. 2–8.

 

Таблица 6. Результаты экспериментальных исследований интегральных прочностных и деформативных характеристик вариатропных слоев центрифугированных бетонов на активированном и неактивированном портландцементе

 

Характе-ристики бетона

Центрифугированный бетон

Виброцентрифугированный бетон

На неактивированном портландцементе

На активированном портландцементе

На неактивированном портландцементе

На активированном портландцементе

Rb,cub, МПа

45,8

57,9

48,7

67,9

Rb, МПа

22,1

24,8

24,9

31,5

Rbt, МПа

5,5

6,9

5,8

8,1

Rbtb, МПа

3,2

4,1

3,3

4,6

εbt,

мм/м·10-3

2,11

2,03

2,01

1,93

εbtR,

мм/м·10-4

1,22

1,12

1,17

1,08

Eb = Ebt, МПа

32,7

34,7

34,9

36,8

 

 

Рис. 2. Зависимость изменения кубиковой прочности при сжатии от технологии изготовления бетона и активации цемента (ЦБ+НПЦ – центрифугированный бетон на неактивированном портландцементе; ЦБ+АПЦ – на активированном портландцементе; ВЦБ+НПЦ – виброцентрифугированный бетон на неактивированном портландцементе; ВЦБ+АПЦ – на активированном портландцементе)

 

Рис. 3. Зависимость изменения призменной прочности при сжатии от технологии изготовления бетона и активации цемента (см. Рис. 2)

 

Рис. 4. Зависимость изменения прочности на растяжение при изгибе от технологии изготовления бетона и активации цемента (см. Рис. 2)

 

Рис. 5. Зависимость изменения прочности при осевом растяжении от технологии изготовления бетона и активации цемента (см. Рис. 2)

 

Проанализировав полученные данные установлено, что значения прочностных характеристик центрифугированного бетона на неактивированном портландцементе ниже аналогичных показателей центрифугированного бетона на активированном портландцементе. Данная тенденция наблюдается и у виброцентрифугированных образцов. Максимальные значения прочностных и минимальные для деформативных характеристик зафиксированы у виброцентрифугированных бетонов на активированном портландцементе.

Так прочность при сжатии центрифугированных образцов на активированном портландцементе выше на 21 % в сравнении с образцами, изготовленными на неактивированном портландцементе, призменная прочность выше на 11 %, прочность на растяжение при изгибе выше на 20 %, прочность при осевом растяжении выше на 22 %. Что касается виброцентрифугированных образцов, изготовленных на активированном портландцементе, то их прочность при сжатии выше на 28 %, прочность на растяжение при изгибе выше на 20 %, призменная прочность выше на 28 %, прочность при осевом растяжении выше на 26 % в сравнении с образцами, изготовленными на неактивированном портландцементе.

 

Рис. 6. Зависимость изменения предельных деформаций при осевом сжатии от технологии изготовления бетона и активации цемента (см. Рис. 2)

 

Рис. 7. Зависимость изменения предельных деформаций при осевом растяжении от технологии изготовления бетона и активации цемента (см. Рис. 2)

 

Рис. 8. Зависимость изменения модуля упругости от технологии изготовления бетона и активации цемента (см. Рис. 2)

 

Предельные деформации при осевом сжатии центрифугированных образцов на активированном портландцементе ниже на 4 %, предельные деформации при осевом растяжении ниже на 8 % в сравнении с образцами, изготовленными на неактивированном портландцементе. Значения модуля упругости образцов на активированном портландцементе выше на 6 %. У виброцентрифугированых образцов на активированном портландцементе предельные деформации при осевом сжатии ниже на 4 %, предельные деформации при осевом растяжении ниже на 8 %, а модуль упругости выше на 5 % в сравнении с образцами, изготовленными на неактивированном портландцементе.

References

1. Bazhenov Yu.M. Tekhnologiya betona [Concrete technology]. M.: Izd. ASV [ASV Publishing House], 2007. 528 p.

2. Dubinina V.G. Razrabotka optimal'nykh parametrov tsentrifugirovaniya zhelezobetonnykh beznapornykh trub: dis. … kand. tekhn. nauk [Development of optimal parameters for centrifugation of reinforced concrete gravity pipes: dis. Cand. of Eng. sciences]. Nizhnii Tagil [Nizhny Tagil], 2002. 150 p.

3. Korolev E.V., Bazhenov Yu.M., Smirnov V.A. Stroitel'nye materialy variatropno-karkasnoi struktury [Construction materials of variatropic-frame structure]. M.: MGSU [MGSU], 2011. 316 p.

4. Suleimanova L.A. Vysokokachestvennye energosberegayushchie i konkurentosposobnye stroitel'nye materialy, izdeliya i konstruktsii [High quality energy saving and competitive building materials, products and structures]. Vestnil BGTU im. V. G. Shukhova [Bulletin of the BSTU named after V.G. Shukhov]. 2017, I. 1. pp. 9-16.

5. Kirthika S.K. Durability studies on recycled fine aggregate concrete / S.K. Kirthika, S.K. Singh // (2020) Construction and Building Materials 250, 118850. DOI:https://doi.org/10.1016/j.conbuildmat.2020.118850.

6. Ferrotto M.F. Analysis-oriented stress-strain model of CRFP-confined circular concrete columns with applied preload / M.F. Ferrotto, O. Fischer, L. Cavaleri // (2018) Materials and Structures 51, 44. DOI:https://doi.org/10.1617/s11527-018-1169-0.

7. Nesvetaev G.V. Razdel'noe betonirovanie pri izgotovlenii tsentrifugirovannykh zhelezobetonnykh izdelii [Separate concreting in the manufacture of centrifuged reinforced concrete products]. Inzhenernyy vestnik Dona [Engineering journal of Don]. 2019, I. 9. URL: http://ivdon.ru/ru/magazine/archive/n9y2019/6223.

8. Mailyan L.R. Vliyanie tekhnologii proizvodstva na strukturoobrazovanie i svoistva betona vibrotsentrifugirovannykh kolonn [Influence of production technology on the structure formation and properties of concrete of vibrocentrifuged columns]. Stroitel'stvo i arkhitektura [Construction and architecture]. 2017, I. 4 (17). pp. 224-228.

9. Kholodnyak M.G. Predlozheniya po raschetnomu opredeleniyu prochnostnykh kharakteristik vibrirovannykh, tsentrifugirovannykh i vibrotsentrifugirovannykh betonov [Proposals for the calculated determination of the strength characteristics of vibrated, centrifuged and vibrocentrifuged concretes]. Vestnik Evraziiskoi Nauki [Bulletin of Eurasian Science]. 2018, I. 6. URL: https://esj.today/PDF/66SAVN618.pdf.

10. Mailyan L.R. Rekomendatsii po uchetu variatropii pri raschete, proektirovanii i izgotovlenii tsentrifugirovannykh konstruktsii iz tyazhelogo betona [Recommendations for the consideration of variatropy in the calculation, design and manufacture of centrifuged structures made of heavy concrete]. Vestnik Evraziiskoi Nauki [Bulletin of Eurasian Science]. 2018, I. 4. URL: https://esj.today/PDF/07SAVN418.pdf.

11. Stel'makh S.A. Theoretical and Practical Aspects of the Formation of the Variational Structure of Centrifuged Products from Heavy Concrete / S.A. Stel'makh, E.M. Shcherban, A.I. Shuyskiy, M.P. Nazhuev // (2018) Materials Science Forum 931, pp. 502-507.

12. Fedyuk R.S. Sovremennye sposoby aktivatsii vyazhushchego i betonnykh smesei [Modern methods of activating binder and concrete mixtures]. Vestnik Inzhenernoi shkoly DVFU [FEFU: School of Engineering Bulletin]. 2018, I. 4(37). pp. 85-99. DOI:https://doi.org/10.5281/zenodo.2008670.

13. Saadoon T. New predictive methodology for the apparent activation energy and strength of conventional and rapid hardening concretes / T. Saadoon, B. Gómez-Meijide, A. Garcia // (2019) Cement and Concrete Research 115, pp. 264-273. DOI:https://doi.org/10.1016/j.cemconres.2018.10.020.

14. Williamson T. The role of activating solution concentration on alkali-silica reaction in alkali-activated fly ash concrete / T. Williamson, M.C.G. Juenger // (2016) Cement and Concrete Research 83, pp. 124-130. DOI:https://doi.org/10.1016/j.cemconres.2016.02.008.

15. Prokopets B.C., Lesovik V.S. Proizvodstvo i primenenie dorozhno-stroitel'nykh materialov na osnove syr'ya, modifitsirovannogo mekhanicheskoi aktivatsiei [Production and use of road-building materials based on raw materials modified by mechanical activation]. Belgorod Izd. BGTU [Belgorod BGTU Publishing House]. 2005. 264 p.

16. Ibragimov R.A. Effect of mechanochemical activation of a binder on the properties of fine-grained concrete / R.A. Ibragimov R.A., S.I. Pimenov, V.S. Izotov // (2015) Magazine of Civil Engineering. 2, pp. 63-69. DOI:https://doi.org/10.5862/MCE.54.7.

17. Zaichenko N.M., Khalyushev A.K., Stel’makh S.A., Shcherban’ E.M., Nazhuev M.P., Chernil’nik A.A. Method for surface modification of cement // Pat. for invention 2715276 Russia, IPC C04B 40/02. - No. 2019138010; declared 11/25/2019; publ. 02/26/2020, Bul. No. 6.

18. Kholodnyak M.G. Sovershenstvovanie rascheta i tekhnologii sozdaniya vibrotsentrifugirovannykh zhelezobetonnykh kolonn s uchetom variatropii struktury: dis. kand. tekhn. nauk [Improvement of the calculation and technology of creating vibrocentrifuged reinforced concrete columns taking into account the variatropy of the structure: dis. Cand. of Eng. sciences]. Rostov-na-Donu: DGTU [Rostov-na-Donu: DSTU]. 2020. 185 p.

19. Nazhuev M.P. Vliyanie rezhimov vibrotsentrifugirovaniya na svoistva poluchaemykh betonov [Influence of vibration centrifugation modes on the properties of the concretes obtained] Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shukhova [Bulletin of the Belgorod State Technological University named after V.G. Shukhova]. 2021. I. 1. pp. 8-19. DOI:https://doi.org/10.34031/2071-7318-2021-6-1-8-19.

20. Nazhuev M.P. Upravlenie integral'nymi deformativnymi kharakteristikami betona za schet var'irovaniya vysoty i shaga tekhnologicheskikh vystupov khomutov vibrotsentrifugiruyushchikh ustroistv [Control of the integral deformative characteristics of concrete by varying the height and pitch of the technological protrusions of the clamps of vibrating centrifugation devices]. Vestnik PNIPU. Prikladnaya ekologiya. Urbanistika. [Bulletin of the PNRPU. Applied ecology. Urbanism] 2021. I. 1. pp. 108-118. DOI: 10/248666/2227-6858/2021-1-12.


Login or Create
* Forgot password?