CALCULATION OF CENTRALLY COMPRESSED CONCRETE FILLED STEEL TUBULAR COLUMNS OF ANNULAR SECTION TAKING INTO ACCOUNT PHYSICAL NONLINEARITY
Abstract and keywords
Abstract (English):
In the article, the resolving equations are obtained for the calculation taking into account the physical nonlinearity and creep of centrally compressed concrete filled steel tubular columns of annular cross-section. The examples of the calculation of the bearing capacity with a short-term load are given. The solution was carried out numerically in the Matlab environment using the finite difference method. The deformation theory of plasticity by G.A. Geniev was used.

Keywords:
pipe concrete, annular section, bearing capacity, deformation theory of plasticity, finite difference method, physical nonlinearity
Text
Publication text (PDF): Read Download
References

1. Krishan A. L., Rimshin V. I., Troshkina E. A. Strength of short concrete filled steel tube columns of annular cross section // IOP Conference Series: Materials Science and Engineering. 2018. Vol. 463. No. 2. Article 022062.

2. Krishan A. L., Troshkina E. A., Chernyshova E. P. Strength of Short Centrally Loaded Concrete-Filled Steel Tubular Columns //IFAC-PapersOnLine. 2018. Vol. 51. No. 30. Pp. 150-154.

3. Krishan A. L., Chernyshova E. P., Sabirov R. R. Calculating the Strength of Concrete Filled Steel Tube Columns of Solid and Ring Cross-Section //Procedia Engineering. 2016. Vol. 150. Pp. 1878-1884.

4. Wong Y. L. i dr. Behavior of FRP-confined concrete in annular section columns //Composites Part B: Engineering. 2008. Vol. 39. No. 3. Pp. 451-466.

5. Wan C. Y., Zha X. X. Nonlinear analysis and design of concrete-filled dual steel tubular columns under axial loading //Steel and Composite Structures. 2016. Vol. 20. No. 3. Pp. 571-597.

6. Mailyan L.R., Chepurnenko A.S., Ivanov A. Calculation of prestressed concrete cylinder considering creep of concrete // Procedia Engineering. 2016. Vol.165. Pp. 1853-1857.

7. Chepurnenko A.S., Andreev V.I., Yazyev B.M. Postroyeniye modeli ravnonapryazhennogo tsilindra na osnove teorii prochnosti Mora [Construction of a model of an equally stressed cylinder based on Mohr's theory of strength] // Vestnik MGSU. 2013. No. 5. Pp. 56-61.

8. Dudnik A.E., Chepurnenko A.S., Nikora N.I. Ploskaya osesimmetrichnaya zadacha termovyazkouprugosti dlya polimernogo tsilindra [Plane axisymmetric problem of thermoviscoelasticity for a polymer cylinder] // Inzhenernyy vestnik Dona. 2015. No. 1-2. URL: http://ivdon.ru/ru/magazine/archive/n1p2y2015/2816

9. Dudnik A.E., Chepurnenko A.S., Litvinov S. V., Denego A.S. Ploskoye deformirovannoye sostoyaniye polimernogo tsilindra v usloviyakh termovyazkouprugosti [Plane deformed state of a polymer cylinder under thermoviscoelastic conditions] // Inzhenernyy vestnik Dona. 2015. No. 2. URL: http://ivdon.ru/ru/magazine/archive/n2p2y2015/3063

10. Geniev G.A., Kissyuk V.N., Tyupin G.A. Teoriya plastichnosti betona i zhelezobetona [The theory of plasticity of concrete and reinforced concrete]. Moscow: Stroyizdat, 1974. 316 p.


Login or Create
* Forgot password?